Defined for academic purposes (low budget projects), NanoSats become of interest in the government and industry communities, since the deployment of swarms would able to act as a single orbiting constellation, providing greater coverage and faster update rates than can be achieved using conventional single satellite operations. On the other hand, that accomplishment is hampered by the absence, due to the satellite’s small dimensions, of an independent efficient propulsion system. This paper investigates the potentialities of a swirling-micropropulsion system that would permit NANOSATs to be “propulsive-independent”. This would allow orbital operations, even at very low altitude, and/or increasing also life-times. The propulsion system, patent pending, adopts H2/O2 obtained by water electrolysis, a swirling combustion chamber and a sub-supersonic nozzle to optimize the thrust. The numerical combustion simulations, of the micro-thrust chamber, show that performances are impressive, in particular if compared to the dimensions, and this would be of benefit in fields such as intelligence, disaster monitoring, CBRNe observation, telecommunications and identification.
A new NANOSATs propulsion system: swirling-combustion chamber and water electrolysis / Minotti, Angelo. - In: AIMS ENERGY. - ISSN 2333-8334. - 6:3(2018), pp. 402-413. [10.3934/energy.2018.3.402]
A new NANOSATs propulsion system: swirling-combustion chamber and water electrolysis
Minotti, Angelo
2018
Abstract
Defined for academic purposes (low budget projects), NanoSats become of interest in the government and industry communities, since the deployment of swarms would able to act as a single orbiting constellation, providing greater coverage and faster update rates than can be achieved using conventional single satellite operations. On the other hand, that accomplishment is hampered by the absence, due to the satellite’s small dimensions, of an independent efficient propulsion system. This paper investigates the potentialities of a swirling-micropropulsion system that would permit NANOSATs to be “propulsive-independent”. This would allow orbital operations, even at very low altitude, and/or increasing also life-times. The propulsion system, patent pending, adopts H2/O2 obtained by water electrolysis, a swirling combustion chamber and a sub-supersonic nozzle to optimize the thrust. The numerical combustion simulations, of the micro-thrust chamber, show that performances are impressive, in particular if compared to the dimensions, and this would be of benefit in fields such as intelligence, disaster monitoring, CBRNe observation, telecommunications and identification.File | Dimensione | Formato | |
---|---|---|---|
Minotti_A-new-NANOSATs_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.